
Dinko 
Korunić

Presentation

EBPF: FEATURES, CAPABILITIES 
AND IMPLEMENTATION



Agenda

1. Intro and overview

2. Coding and deployment

3. Network hooks and performance

4. Security concerns





Intro and overview





What is eBPF

s
o

u
rc

e
: 

e
B

P
F

d
o
c
u

m
e

n
ta

ti
o

n



Overview
• eBPF evolved from packet filtering to a general purpose “computing machine”

• provides:

• high-performance networking, observability, continuous profiling, monitoring, 
security tools

• allows custom code to run in Linux kernel in a safe manner

• it takes years to get new functionality added (kernel patch accepted) and for it to reach 
production (Linux distributions) environments

• no need to patch kernel and/or maintain kernel patches

• LKMs are risky: security, performance, stability, compatibility…

• custom code can be loaded and unloaded on demand without any negative impact

• macro perspective:

• passive - event driven (does not poll)

• runs in a kernel “virtual machine”

• with various attachment points (hooks) – different program types



Overview (cont)
• micro perspective:

• verified JIT-compiled code runs in a kernel sandbox as native instructions

• interacts with userland software, kernel and kernel modules (ie. NIC drivers)

• even able to run in fully offloaded mode (SmartNICs)

• can change kernel data/logic and communicate with userspace application through maps

• high performance – no translation kernelspace-userspace

• attachments - eBPF hooks for custom programming w/ different eBPF programs:

• kprobes: dynamic kernel probes for tracing kernel functions

• uprobes: userspace probles for tracing userspace application functions

• tracepoints: static probes for tracing specific kernel events

• networking:
• XDP: for high-performance packet processing directly w/ NIC drivers and HW

• TC: traffic shaping and packet processing

• sockmap/sockops: socket splicing, processing, policies, etc.

• cgroup-bpf: applying eBPF to cgroups

• LSM: Linux Security Module API for security enforcing



Program types
• networking:

• BPF_PROG_TYPE_SOCKET_FILTER: program to perform socket filtering

• BPF_PROG_TYPE_SCHED_CLS: program to perform traffic classification at the TC layer

• BPF_PROG_TYPE_SCHED_ACT: program to add actions to the TC layer

• BPF_PROG_TYPE_XDP: program to be attached to the eXpress Data Path hook

• BPF_PROG_TYPE_SOCKET_OPS: program to catch and set socket operations such as 
retransmission timeouts, passive/active connection establishment etc.

• BPF_PROG_TYPE_SK_SKB: program to access socket buffers and socket parameters (IP 
addresses, ports, etc) and to perform packet redirection between sockets

• BPF_PROG_TYPE_FLOW_DISSECTOR: program to do flow dissection (to find important 
data in network packet headers)

• kernel tracing, monitoring:

• BPF_PROG_TYPE_PERF_EVENT: program to attach to HW and SW perf events

• BPF_PROG_TYPE_KPROBE: program to attach to kprobes (kernel routines)

• BPF_PROG_TYPE_TRACEPOINT: program to attach to predefined trace points

• many more…



so
u
rc

e
: 

B
PF

 P
er

fo
rm

an
ce

 T
o

o
ls

: 
Li

nu
x 

Sy
st

e
m

 
an

d
 A

p
pl

ic
at

io
n 

O
bs

er
va

bi
lit

y



Popular examples
• Cloudflare XDP DDoS mitigation

• Facebook/Meta Katran L4 load balancer

• Netflix Flow Exporter for TCP flows (IP change events and flow log data) in realtime for 
system monitoring, profiling, network segmentation, forecasting, etc.

• Vmware Carbon Black EDR Linux sensors

• Datadog NPM: network performance monitoring

• Tetragon: security, observability, runtime enforcement

• Falco: cloud-native threat-detection for containers and K8s

• Inspektor-Gadget: system insights for K8s/containers, observability etc.

• Pixie: debugging for applications on K8s, protocol tracing, connection tracing, etc.

• Cilium: networking (segmentation), observability, security

• Calico: cloud-native container networking and security (eBPF dataplane)



Cloud-native environments
• containers, K8s, Lambda, Fargate, etc.

• shared kernel on host/hypervisor – runs eBPF code and has full visibility

• containers

• networking (internal and external communication, open sockets)

• files, processes, etc.

• no need to change applications or configuration

• eBPF programs run completely transparent

• per-container security and network policies, but processed in-kernel

• sidecars in K8s – many cons:

• instrumentation runs ad separate containers

• application pod needs restart to add/remove sidecar

• configuration (YAML) changes

• pod start time slowed down w/ sidecars, different readiness

• additional networking latencies w/ networking sidecars



Fast evolving

Feature Kernel 

required

Description Scenario

TC 4.1

Network traffic classification and control

Networking

XDP 4.8 Network dataplane programming technology 

(for L2/L3 services)

Networking

Cgroup 

socket

4.10 Network filtering and accounting attached to 

Cgroups

Container

AF_XDP
4.18 Network packets are directly sent to the user 

mode (similar to DPDK)

Networking

Sockmap 4.20 Short circuit processing Container

s
o

u
rc

e
: 

O
p

e
n

E
u

le
r 

-
e

B
P

F
In

tr
o

d
u
c
ti
o

n



Fast evolving (cont)

Feature Kernel 

required

Description Scenario

Cgroup 

sysctl

5.2

Monitor control and access to sysctl usage in 

Cgroups

Container

BPF 

trampoline

5.5 Replace kprobe/kretprobe for better 

performance (zero overhead), 
troubleshooting and debugging eBPF
programs

Performance 

tracing

KRSI (LSM 

+ eBPF)

5.7 Kernel Runtime Security Instrumentation –

attaching to various LSM hooks and control 
(allow/deny); custom MAC policies with 
arbitrary code

Security

s
o

u
rc

e
: 

O
p

e
n

E
u

le
r 

-
e

B
P

F
In

tr
o

d
u
c
ti
o

n



Coding and deployment



Workflow
1. source code (only C or Rust) is compiled into bytecode

2. bytecode is loaded from userspace to kernelspace and statically verified by eBPF 
verifier: on more recent kernel versions w/ BTF, CO:RE enables program to run 
“everywhere”

3. only verified code can run, so it is not possible to:

• tamper with kernel memory

• exhaust resources via unbounded loops

• leak kernelspace memory to userspace

4. upon approval kernel performs JIT (dynamic translation) and hardened
• kernel memory holding program is made r/o to prevent manipulation

• constants are blinded - memory addresses for constants are randomized

5. program can be either offloaded to HW or executed by CPU

6. communication with userspace programs through maps





Portability - CO:RE

• BCC (BPF Compiler Collection) framework

• requires large compile toolchain (Clang/LLVM)

• used to compile BPF on target host during runtime

• requires local kernel headers which have to match with running kernel and compiles on 
the fly – memory layout of the kernel is exactly what BPF program expects

• CO:RE – Compile Once Run Everywhere

• portability: compile, pass verification and work correctly across different kernel versions

• kernel types and data structures are frequently changed (fields renamed, shuffled, 
moved into new inner struct, removed, types changed, etc.)

• BPF interfaces are stable

• how does it work:
• BTF (BPF Type Format) information exposed by kernel in /sys/kernel/btf/vmlinux

• in-kernel BTF from Linux kernel 4.18, for older kernels there is btfhub repository

• Clang emits BTF relocations: descriptions of what BPF program intended to access



Portability - CO:RE (cont)

• BPF program loader (ex. libbpf or cilium-ebpf) on start:

• processes BPF ELF bytecode

• reads BPF program BTF information (types, relocation information etc.)

• reads running kernel BTF information

• matches both for all types and fields and updates all offsets and relocatable data to 
make sure BPF program logic is matching running kernel

• custom tailored BPF program is passed on to eBPF verifier

• possible to use extern Kconfig variables and struct flavors for incompatible changes

extern u32 LINUX_KERNEL_VERSION __kconfig;

…

if (LINUX_KERNEL_VERSION >= KERNEL_VERSION(4, 11, 0))

utime_ns = BPF_CORE_READ(task, utime);

else

utime_ns = BPF_CORE_READ(task, utime) * (1000000000UL / CONFIG_HZ);



Architecture

s
o

u
rc

e
: 

B
PF

C
O

N
TA

IN
: F

ix
in

g 
th

e 
So

ft
 U

n
de

rb
el

ly
 o

f 
C

o
n

ta
in

e
r 

Se
cu

ri
ty





Verifier
• type checking of operations

• stack limit of 512b

• limit 1M instructions – but it is possible to call other eBPF programs

• no signed division

• build state machine, check for correct behaviours

• guarantee of termination:

• DFS search if program can be parsed to directed acyclic graph (DAG)

• only if there are no backward jumps

• loops have to be predefined size (can have loop unroll)

• check for unreachable instructions

• compute worst-case execution



Verifier (cont)
• some helpers can be called only if the license is compatible (GPL)

• guaranteed safety – invalid memory access must never happen

• disallowed memory access beyond local variables and packet boundaries
• to access any byte in the packet, it is required to perform a border check

• following pointers – only through bpf_probe_read()

• floating point arithmetic – not permitted

static inline int process_ip4(struct iphdr *ip4, void *data_end, statkey *key) {

// validate IPv4 size

if ((void *)ip4 + sizeof(*ip4) > data_end) {

return NOK;

}



Maps
• generic key-value stores, user-defined structures and types with fixed sizes

• accessible from both userspace and kernelspace – means of information exchange

• 24 different map types
• some are per CPU (performance reasons, agreggation happens in userspace application), 

most are global (spinlock or atomic operations required)

• use locked memory – sometimes limits (RLIMIT_MEMLOCK) are too low

• ref-counted and can be pinned to filesystem at /sys/fs/bpf

struct {

__uint(type, BPF_MAP_TYPE_LRU_HASH); // LRU hash requires 4.10 kernel

__uint(max_entries, MAX_ENTRIES);

__type(key, statkey);

__type(value, statvalue);

} pkt_count SEC(".maps");



Map types
• BPF_MAP_TYPE_ARRAY: a map where entries are indexed by a number

• BPF_MAP_TYPE_PROG_ARRAY: a map that stores references to eBPF programs

• BPF_MAP_TYPE_HASH: stores entries using a hash function

• BPF_MAP_TYPE_PERCPU_HASH: a map/hash table for each processor

• BPF_MAP_TYPE_LRU_HASH: a map that stores entries using hash function with LRU 
removal

• BPF_MAP_TYPE_LRU_PERCPU_HASH: allows the creation of a hash table for each 
processor core with LRU remove policy

• BPF_MAP_TYPE_PERCPU_ARRAY: an array for each processor core

• BPF_MAP_TYPE_LPM_TRIE: longest-prefix match (LPM) trie

• BPF_MAP_TYPE_ARRAY_OF_MAPS: an array to store references to eBPF maps

• BPF_MAP_TYPE_HASH_OF_MAPS: a hash table to store references to eBPF maps

• many more..



Helper functions
• special functions offered by kernel infrastructure

• interacting with maps, modifying packets, printing messages to kernel trace

• each program type has different helper functions

• 100s of helpers:

• bpf_map_delete_elem, bpf_map_update_elem, bpf_map_lookup_elem: used to remove, 
install or update, and search elements from maps

• bpf_get_prandom_u32: returns a 32-bit pseudo-random value

• bpf_l4_csum_replace, bpf_l3_csum_replace: used to recalculate L4 and L3 checksums

• bpf_ktime_get_ns: returns time since system boot, in nanoseconds

• bpf_redirect, bpf_redirect_map: functions to redirect packets to other network devices. 
The second allows specifying the device dynamically through a special redirection map

• bpf_skb_vlan_pop, bpf_skb_vlan_push: remove/add VLAN tags from a packet

• bpf_getsockopt, bpf_setsockopt: similar to user-space calls to getsockopt() and 
setsockopt() to get/set socket options

• bpf_get_local_storage: returns a pointer to a local storage area, can be shared

• …



Compiler toolchain and frontends
• C (BPF Compiler Collection):

• libbpf

• Rust:

• Libbpf-rs: Rust wrapper around libbpf

• Aya: purely in Rust, syscalls through libc crate, can be built w/ musl

• Golang:

• Libbpfgo: Go wrapper around libbpf C code, sadly uses CGo

• ebpf-go (Cilium): bpf2go compiles C to eBPF bytecode, generates Go file containing eBPF 
and Go types for map keys and values

• Second-tier support:
• Python:

• libbpf Python bindings, PyEBPF, pybpf, bpfmaps

• Ruby, Lua…



Network hooks and 
performance



Network hooks
• most important hooks:

• eXpress Data Path XDP
• only for RX

• high performance,

• can be offloaded to NIC

• Traffic Control TC
• both RX and TX

• mid performance

s
o

u
rc

e
: 
F

a
s
t 

P
a
c
k
e

t 
P

ro
c
e

s
s
in

g
 w

it
h

 e
B

P
F

a
n
d

 X
D

P
: 

C
o
n

c
e

p
ts

, 
C

o
d
e

, 
C

h
a

lle
n
g

e
s
 a

n
d

 A
p

p
lic

a
ti
o
n

s



eXpress Data Path – XDP
• programmable packet processing technology

• widely adopted: Cilium, Meta Katran, various anti-DDoS tools, Calico

• issues: works only on ingress/RX path, fairly basic context (struct xdp_md)

• alternatives (DPDK, Netmap) bypass kernel and have better performance (poll mode), 
but completely take-over NIC:
• XDP has lower CPU usage, dynamic attach/detach without service interruptions

• XDP does not break existing networking stack, security, routing, etc. 

• on packet arrival before processing data, eBPF program is called to execute actions:

• XDP_ABORTED: error, drop packet w/ exception

• XDP_DROP: drop packet silently

• XDP_PASS: forwards packet to regular stack (TC eBPF program further in the chain)

• XDP_TX: forward packet back (can be modified) on the same interface

• XDP_REDIRECT: redirect to different interface, CPU (further processing) or userspace 
AF_XDP sockets (userspace processing)

• packet data can be read/written and even resized (with checksum recalculation)



eXpress Data Path – XDP (cont)
• models:

• generic XDP – ordinary network path, kernel emulates native execution, doesn’t have full 
performance due to extra socket buffer allocation

• native XDP – loaded by NIC driver, works in the initial receive path, needs driver (i40e, 
nfp, mlx*, ixgbe) support, drivers are regularly getting XDP support

• offloaded XDP – runs directly on NIC, executes w/o CPU, needs driver and HW support 
(SmartNICs: nVidia/Mellanox BlueField and ConnectX, Netronome Agilio NFP), runs at 
wirespeed, great for low-latency high-speed workloads

• DDoS mitigation

• XDP_DROP happens at early stage, efficient filtering w/ very low cost per packet

• scrubbing and forwarding legitimate traffic using XDP_TX

• forwarding, load-balancing

• use XDP_TX and XDP_REDIRECT

• monitoring, flow sampling
• possible complex packet analysis, adding custom metadata etc.



XDP C example
#include <linux/bpf.h>

#include <bpf/bpf_helpers.h>

struct {

__uint(type, BPF_MAP_TYPE_ARRAY); 

__type(key, __u32);

__type(value, __u64);

__uint(max_entries, 1);

} pkt_count SEC(".maps");

char __license[] SEC("license") = "Dual 
MIT/GPL";

SEC("xdp")

int count_packets() {

__u32 key = 0; 

__u64 *count = 
bpf_map_lookup_elem(&pkt_count, &key); 

if (count) { 

__sync_fetch_and_add(count, 1); 

}

return XDP_PASS; 

}



XDP Rust/Aya example
#![no_std]

#![no_main]

use aya_ebpf::{bindings::xdp_action, macros::xdp, 
programs::XdpContext};

use aya_log_ebpf::info;

#[xdp]

pub fn xdp_hello(ctx: XdpContext) -> u32 {

match unsafe { try_xdp_hello(ctx) } {

Ok(ret) => ret,

Err(_) => xdp_action::XDP_ABORTED,

}

}

unsafe fn try_xdp_hello(ctx: XdpContext) -> Result<u32, 
u32> {

info!(&ctx, "received a packet");

Ok(xdp_action::XDP_PASS)

}

#[panic_handler]

fn panic(_info: &core::panic::PanicInfo) -> ! {

unsafe { core::hint::unreachable_unchecked() }

}



XDP performance

s
o

u
rc

e
: 

T
h

e
 e

X
p
re

s
s

d
a
ta

 p
a

th
: 

fa
s
t 
p

ro
g
ra

m
m

a
b
le

 p
a
c
k
e

t 
p

ro
c
e

s
s
in

g
 i
n

 t
h

e
 o

p
e

ra
ti
n
g

 s
y
s
te

m
 k

e
rn

e
l



XDP performance (cont)
• DPDK – best performance in drop 

packet scenario

• XDP forwarding w/ different NIC 
requires packet buffers allocation by 
device driver

• XDP does not match DPDK, but 
mostly due to lack of driver micro 
optimisations

s
o

u
rc

e
: 

T
h

e
 e

X
p
re

s
s

d
a
ta

 p
a

th
: 

fa
s
t 
p

ro
g
ra

m
m

a
b
le

 p
a
c
k
e

t 
p

ro
c
e

s
s
in

g
 i
n

 t
h

e
 o

p
e

ra
ti
n
g

 s
y
s
te

m
 k

e
rn

e
l



Traffic Control - TC
• for both egress and ingress path

• lower throughput than XDP as it happens later in the stack

• has access to entire Ethernet frame, works at TC layer – queueing disciplines for packet 
queues, filters to allow/deny/modify packets

• more packet information compared to XDP (struct __sk_buff) as packet has been 
already parsed

• actions available:

• TC_ACT_OK: deliver the packet in TC queue

• TC_ACT_SHOT: drop packet

• TC_ACT_UNSPEC: use standard TC action

• TC_ACT_PIPE: perform next action (if it exists)

• TC_ACT_RECLASSIFY: restart classification

• possible to use both TC and XDP at the same time: TC for TX and XDP for RX traffic



TC – XDP coop
static inline void xdp_process_packet(struct xdp_md *xdp) {

void *data = (void *)(long)xdp->data;

void *data_end = (void *)(long)xdp->data_end;
process_eth(data, data_end, data_end - data);

}

SEC("xdp")

int xdp_count_packets(struct xdp_md *xdp) {

xdp_process_packet(xdp);
return XDP_PASS;

}

static inline void tc_process_packet(struct
__sk_buff *skb) {

void *data = (void *)(long)skb->data;

void *data_end = (void *)(long)skb->data_end;
process_eth(data, data_end, skb->len);

}

SEC("tc")

int tc_count_packets(struct __sk_buff *skb) {

tc_process_packet(skb);
return TC_ACT_UNSPEC;

}



Security concerns



eBPF security
• programs can monitor (and alter) processes on the whole system, from host VM to 

other containers

• potential for malware and rootkits:

• manipulating network packets

• hijacking processes (execute malicious commands) and manipulating memory of 
processes - bpf_probe_write_user helper permits writing to memory of other processes

• DoS against processes (terminating processes)

• stealing sensitive data (reading memory and opened files)

• modifying syscalls’ arguments or return code

• container escape – through hijacking privileged processes

• K8s exploitation through abusing insecure Pods or Operator Service Accounts

• attacks stealthy and difficult to detect (tracing/kprobes can defeat detector tools, 
possible to implement C&C channels)

• eBPF programs require CAP_SYS_ADMIN
• a lot of insecure containers w/ such permissions (~2.5% of all Docker Hub containers)

• frequently enabled in containers due to mount or some other dependancies



eBPF security (cont)
• lack of fine-grained ACLs for eBPF (only toggle on/off)

• CAP_BPF is not a solution either (requires CAP_PERFMON and CAP_NET_ADMIN too)

• restricting eBPF w/ RBAC to trusted programs

• supply chain attacks still possible due to large usage of eBPF in common tracing tools 
(Datadog, Falco, Tetragon, Inspektor, Pixie)



eBPF security (cont)

s
o

u
rc

e
: 

C
ro

s
s
 C

o
n

ta
in

e
r 

A
tt

a
c
k
s
: 

T
h

e
 B

e
w

il
d
e

re
d
 

e
B

P
F

o
n
 C

lo
u
d

s



eBPF security (cont)
• Docker insecure setups:

• --privileged flag

• --cap-add SYS_ADMIN

• exposing docker.sock to the container

• K8s insecure setups:

• Pod Service Account files readable in 
/var/run/secrets/kubernetes.io/serviceaccount/

• Operator Pods deployed together with Pods that host public services (steal SA, deploy 
malicious Pods)

• possible to hijack host processes (cron, shell scripts, etc.)

• virtualized containers – help enforce security boundaries and reduce attack surface

• no solution for a fine-grained permission model (per program, etc.)

• bpfman

• software stack eBPF management, monitoring and access control



EOF



Recommended literature
• books:

• Liz Rice: Learning eBPF (O’Reilly)

• ebpf-go documentation

• The Aya Book

• articles:

• Vishal Patil: Oxidize eBPF: eBPF programming with Rust

• Marcos A. M. Viera et al.: “Fast Packet Processing with eBPF and XDP: Concepts, Code, 
Challenges and Applications”

• Yi He and Roland Guo et al.: “Cross Container Attacks: The Bewildered eBPF on Clouds”

• Niclas Hedam: “eBPF - From a Programmer’s Perspective”

• Toke Høiland-Jørgensen, et al.: “The eXpress data path: fast programmable packet 
processing in the operating system kernel”

• https://github.com/zoidyzoidzoid/awesome-ebpf

• https://github.com/gojue/ebpf-slide

https://github.com/zoidyzoidzoid/awesome-ebpf
https://github.com/gojue/ebpf-slide


Have more questions?

dkorunic@haproxy.com

https://www.haproxy.com/contact-us

mailto:jsuchy@haproxy.com


EBPF: FEATURES, CAPABILITIES 
AND IMPLEMENTATION


	Slide 1
	Slide 2
	Slide 3
	Slide 4: Intro and overview
	Slide 5
	Slide 6: What is eBPF
	Slide 7: Overview
	Slide 8: Overview (cont)
	Slide 9: Program types
	Slide 10
	Slide 11: Popular examples
	Slide 12: Cloud-native environments
	Slide 13: Fast evolving
	Slide 14: Fast evolving (cont)
	Slide 15: Coding and deployment
	Slide 16: Workflow
	Slide 17
	Slide 18: Portability - CO:RE
	Slide 19: Portability - CO:RE (cont)
	Slide 20: Architecture
	Slide 21
	Slide 22: Verifier
	Slide 23: Verifier (cont)
	Slide 24: Maps
	Slide 25: Map types
	Slide 26: Helper functions
	Slide 27: Compiler toolchain and frontends
	Slide 28: Network hooks and performance
	Slide 29: Network hooks
	Slide 30: eXpress Data Path – XDP
	Slide 31: eXpress Data Path – XDP (cont)
	Slide 32: XDP C example
	Slide 33: XDP Rust/Aya example
	Slide 34: XDP performance
	Slide 35: XDP performance (cont)
	Slide 36: Traffic Control - TC
	Slide 37: TC – XDP coop
	Slide 38: Security concerns
	Slide 39: eBPF security
	Slide 40: eBPF security (cont)
	Slide 41: eBPF security (cont)
	Slide 42: eBPF security (cont)
	Slide 43: EOF
	Slide 44: Recommended literature
	Slide 45
	Slide 46

